Contenidos
¿Qué es la sangre? funciones y composición
Funciones de la sangre
La sangre es un vehículo líquido de comunicación vital, entre los distintos tejidos del organismo. Entre sus funciones, destacan:
- Distribución de nutrientes desde el intestino a los tejidos
- Intercambio de gases: transporte de oxígeno desde los pulmones hasta los tejidos y de dióxido de carbono desde los tejidos hasta los pulmones
- Transporte de productos de deshecho, resultantes del metabolismo celular, desde los lugares de producción hasta los de eliminación
- Transporte de hormonas desde las glándulas endocrinas hasta los tejidos diana
- Protección frente a microorganismos invasores
- Protección frente a hemorragias
Composición de la sangre
La sangre consta de una parte líquida, el plasma sanguíneo, en el que se encuentran elementos formes (las células sanguíneas) en suspensión.
La sangre es de color rojo debido a la presencia de hemoglobina en los hematíes. Su viscosidad y su densidad están relacionadas con la cantidad de hematíes y su presión osmótica, sobre todo, con su contenido en proteínas. Su pH se encuentra entre 7.35-7.45.
El volumen de sangre circulante o volemia es la cantidad total de sangre que tiene un individuo y representa aproximadamente el 8% del peso corporal (5.5 L en un hombre de 70 Kg y 250 ml en un recién nacido que pese 3.2 Kg). Del volumen sanguíneo total, alrededor de 1 litro se encuentra en los pulmones, 3 litros en la circulación venosa sistémica y el litro restante se reparte entre el corazón, las arterias sistémicas, las arteriolas y los capilares.
El plasma sanguíneo es un líquido amarillento claro constituido por un 95% de agua y el 5% restante por diversas sustancias en solución y suspensión. Estas sustancias incluyen: iones minerales (sodio, potasio, calcio, cloro …), pequeñas moléculas orgánicas (aminoácidos, ácidos grasos y glucosa) y proteínas plasmáticas (albúminas, fibrinógeno…). En condiciones normales, las proteínas del plasma constituyen el 7-9% del plasma (6-8 g/100 ml), destacando tres grandes grupos de proteínas: albúminas, globulinas y factores de la coagulación como el fibrinógeno y la protrombina.
Las albúminas son las más pequeñas y abundantes y representan el 60% de las proteínas del plasma. Las sintetiza el hígado y actúan como transportadoras de lípidos y hormonas esteroides en la sangre, siendo responsables de la mayor parte de la presión osmótica (presión oncótica) que regula el paso de agua y solutos a través de los capilares.
Las globulinas representan el 40% de las proteínas del plasma. Se dividen en α-globulinas, β-globulinas y ƴ-globulinas. Las α y β -globulinas se sintetizan en el hígado y transportan lípidos y vitaminas liposolubles en la sangre. Las ƴ -globulinas (gammaglobulinas) son anticuerpos producidos por las células plasmáticas y resultan fundamentales en la defensa del organismo frente a las infecciones.
El fibrinógeno es un importante factor de la coagulación. Es sintetizado por el hígado y representa el 2-4% de las proteínas del plasma.
Normalmente, la composición del plasma se mantiene siempre dentro de unos límites seguros desde un punto de vista biológico, gracias a diversos mecanismos homeostáticos (homeostasia = equilibrio).
Distinguimos entre plasma y suero:
- El plasma es la parte líquida de la sangre sin coagular.
- El suero es el líquido sobrenadante que queda cuando la sangre total se coagula, por lo que tiene una composición similar a la del plasma, aunque sin fibrinógeno ni otros factores de la coagulación.
Existen 3 tipos de células en la sangre:
- Glóbulos rojos o eritrocitos o hematíes
- Glóbulos blancos o leucocitos: Granulocitos o leucocitos granulares (neutrófilos, eosinófilos y basófilos). Agranulocitos o leucocitos agranulares (linfocitos y monocitos)
- Plaquetas o trombocitos.
Hematopoyesis
La hematopoyesis es el proceso de formación, maduración y paso a la circulación sistémica de las células de la sangre. Los 3 tipos de células sanguíneas no se originan en la sangre, sino que solamente la emplean para realizar sus funciones o para desplazarse de un lado a otro. En realidad, proceden de un precursor común o célula madre que se origina en el tejido hematopoyético de la médula ósea y que es pluripotencial porque puede diferenciarse en cualquier tipo de célula sanguínea.
En la vida embrionaria la hematopoyesis tiene lugar en el hígado, bazo y ganglios linfáticos. En la última parte del embarazo y después del nacimiento tiene lugar en la médula ósea de todos los huesos. A partir de los 20 años, la médula ósea de los huesos de las extremidades es invadida por células adiposas (médula amarilla) y la médula ósea activa persiste en algunos huesos como son las vértebras, el esternón, las costillas, los huesos planos de la pelvis y los extremos del húmero y el fémur. A medida que pasan los años la médula ósea de estas zonas se va haciendo también menos productiva.
Las células madres hematopoyéticas pluripotenciales (CMHP) pueden sufrir dos procesos:
- Autoproliferación, por el que se multiplican y convierten en células iguales que las originales, por la acción de proteínas inductoras del crecimiento.
- Diferenciación en células madres comprometidas para el desarrollo de una línea celular concreta. De las células madre comprometidas, proceden las células progenitoras que no son capaces de autoproliferar y dan lugar a células más específicas. Algunas células progenitoras son conocidas como unidades formadoras de colonias (UFC). Las células de la siguiente generación ya son las células precursoras o blastos.
- Las células madres comprometidas mieloides dan lugar a: las unidades de células progenitoras formadoras de colonias eritrocíticas (UFC-E), de donde derivan los eritrocitos; las unidades de células progenitoras formadoras de colonias granulocitos-monocitos (UFC-GM) de donde derivan los granulocitos neutrófilos y los monocitos; las unidades de células progenitoras formadoras de colonias de megacariocitos (UFC-MEG) de donde derivan las plaquetas y, directamente, a las células precursoras llamadas mieloblastos eosinofílicos, de donde derivan los eosinófilos, y mieloblastos basofílicos, de donde derivan los basófilos.
- Las células madres comprometidas linfoides dan lugar directamente a las células precursoras o linfoblastos: los linfoblastos B y los linfoblastos T.
Después, por una serie de divisiones celulares se consigue la diferenciación y maduración completa de las células sanguíneas.
Eritrocitos o hematíes o glóbulos rojos
Los glóbulos rojos o eritrocitos o hematíes son el tipo de célula más numerosa de la sangre ya que constituyen el 99% de los elementos formes de la sangre. En realidad, no son verdaderas células porque no tienen núcleo ni otras organelas y su tiempo de vida es limitado (unos 120 días). Tienen forma de discos bicóncavos, con un diámetro medio de 8 micras, son muy finos y flexibles y pueden deformarse para circular a través de los capilares más estrechos. En el hombre normal su número es de unos 5,200.000/m3 (5×1012/litro ó 5 billones de hematíes por litro de sangre) y en la mujer 4,700.000/mm3 (4,7×1012/litro) de sangre.
Su principal función es la de transportar la hemoglobina y, en consecuencia, llevar oxígeno (O2) desde los pulmones a los tejidos y dióxido de carbono (CO2) desde los tejidos a los pulmones. La hemoglobina (Hb) es la responsable del color rojo de la sangre y es la principal proteína de los eritrocitos (hay unos 15 g/dl de sangre). Cada molécula de Hb está formada por 4 subunidades y cada subunidad consiste en un grupo hemo (que contiene 1 átomo de hierro) unido a una globina. La fracción con hierro de la Hb se une de forma reversible al O2 para formar oxihemoglobina.
El hematocrito representa la proporción del volumen sanguíneo total que ocupan los hematíes. En condiciones normales es del 38% (5) en la mujer y del 42% (7) en el hombre.
El volumen corpuscular medio (VCM) es el volumen medio de cada eritrocito. Es el resultado de dividir el hematocrito por el número de hematíes. Su valor normal esta entre 82-92 fl (fentolitros). Si es mayor se dice que hay una macrocitosis y si es menor, una microcitosis.
La hemoglobina corpuscular media (HCM) es el contenido medio de Hb en cada eritrocito. Es el resultado de dividir la cantidad de hemoglobina total por el número de hematíes. Su valor normal es de unos 28 pg (picogramos).
La concentración corpuscular media de hemoglobina (CCMH) proporciona un índice del contenido medio de Hb en la masa de eritrocitos circulantes. Es el resultado de dividir la cantidad de hemoglobina total por el hematocrito. Su valor es de unos 33 g/dl.
La velocidad de sedimentación globular (VSG) es la velocidad con que los hematíes sedimentan en un tubo de sangre descoagulada. En condiciones normales es de 2-10 mm en la primera hora. Aumenta en casos de infecciones o inflamaciones. En el embarazo puede estar alta de forma fisiológica.
Eritropoyesis
La eritropoyesis es el proceso de formación y maduración de los eritrocitos y dura, aproximadamente, una semana. A partir de las las unidades de células progenitoras formadoras de colonias eritrocíticas (UFC-E) se forma la primera célula precursora de la serie roja: el proeritroblasto. Los proeritroblastos se dividen y forman distintos tipos de eritroblastos que van madurando y sintetizando hemoglobina (Hb). Una vez se ha llenado el citoplasma de estas células con hemoglobina, el núcleo se condensa y es expulsado de la célula, dando lugar al reticulocito (forma joven de hematie), que pasa al interior de los capilares sanguíneos para circular por la sangre. En el plazo de 1 a 2 días, cada reticulocito se transforma en un hematíe. A causa de su vida breve, la concentración de los reticulocitos, en condiciones normales, es un poco menor del 1% de todos los hematíes circulantes.
Durante la transición de reticulocito a hematíe se pierden las mitocondrias y los ribosomas con lo que desaparece la capacidad de realizar el metabolismo oxidativo y de sintetizar Hb, de modo que los hematíes maduros cubren sus necesidades metabólicas a partir de la glucosa y la vía glucolítica, produciendo grandes cantidades de 2,3 difosfoglicerato.
Hay dos factores reguladores de la producción de hematíes, que son la eritropoyetina y la oxigenación tisular para mantener regulada, dentro de límites muy estrechos, la masa total de eritrocitos en el sistema circulatorio. Siempre hay un número adecuado de eritrocitos disponibles para proporcionar el suficiente oxígeno (O2) a los tejidos, sin que sea excesivo para dificultar la circulación de la sangre.
La eritropoyetina es el principal factor estimulador de la producción de hematíes. Es una hormona circulante que se produce en los riñones en su mayor parte (80-90%) y, el resto, en el hígado, lo que explica que, cuando enferman los 2 riñones se produzca una anemia muy importante ya que la eritropoyetina formada en el hígado solo es suficiente para producir la 1/3 parte de los hematíes necesarios. El efecto de esta hormona consiste en estimular la diferenciación de las células de las UFC-E a proeritroblastos y el resto de células hasta llegar al eritrocito y acelerar la maduración de las mismas. Cuando la médula ósea produce glóbulos rojos con gran rapidez, muchas de las células pasan a la sangre en su fase inmadura así que el porcentaje de reticulocitos puede ser un 30-50% de los hematíes circulantes.
La oxigenación tisular es el otro gran factor regulador de la producción de hematíes. Cualquier situación que provoque una disminución en el O2 transportado a los tejidos aumenta la formación de eritrocitos, a través de la estimulación de la producción de eritropoyetina. Sucede, por ejemplo, en el caso de una anemia aguda producida por una hemorragia (gran disminución del número de eritrocitos) o en la exposición crónica a grandes alturas (en que hay una disminución de la concentración de oxígeno en el aire atmosférica).
Hay, además, dos vitaminas necesarias para la maduración de los hematíes desde la fase de proeritroblastos. Son la vitamina B12 o cianocobalamina y el ácido fólico, que son necesarias para la formación del DNA. Si faltan se produce una anemia de hematíes grandes o megaloblastos que tienen una membrana débil y frágil con lo que se rompen con facilidad, siendo su período de vida menos de la mitad de lo normal. Por tanto, el déficit de vitamina B12 o de ácido fólico causa una anemia por un fallo en la maduración de los eritrocitos.
Metabolismo del hierro
El hierro es un componente esencial de la hemoglobina (Hb) porque es necesario para que ésta sea sintetizada. El organismo de un varón adulto contiene, en total, 4.5 gr de hierro, de los cuales alrededor de un 75% se encuentra dentro de la Hb, en los hematíes. Aproximadamente, otro 5% esta dentro de la mioglobina (proteína muscular) y diferentes enzimas y el resto se almacena en forma de ferritina, principalmente en el hígado pero también en el bazo y la médula ósea.
El hierro que se ingiere en una dieta normal es de unos 15-20 mg al día. Es absorbido a través de las paredes del intestino delgado en cantidades que dependen de las necesidades del organismo (aproximadamente, un 10%) de modo que aunque se ingieran alimentos muy ricos en hierro solo se absorberá el necesario al interior del organismo y el restante será eliminado en las heces.
Una vez absorbido, el hierro pasa a la sangre y se combina de inmediato con una proteína del plasma llamada apotransferrina, dando lugar a la transferrina con la que es transportado hacia las partes del cuerpo donde se necesita, como la médula ósea. La transferrina se une de forma muy fuerte a unos receptores situados en la membrana de las células y los complejos transferina-receptor son interiorizados por la célula y, una vez en el interior celular, el hierro es incorporado al grupo hemo (si se trata de un eritroblasto) o almacenado combinándose con la proteína apoferritina, situada en el citoplasma celular, para dar lugar a la ferritina. Este hierro almacenado en la ferritina se llama hierro de depósito. La ferritina puede almacenar diferentes cantidades de hierro en función de las necesidades, de modo que cuando la cantidad de hierro en el plasma disminuye mucho, el hierro se libera de la ferritina de forma fácil, sale al exterior celular y puede ser transportado por la transferrina hacia las células que lo necesitan.
Los varones excretan cada día cerca de 1 mg de hierro, principalmente por las heces o por descamación de las células de la piel y del intestino. Las mujeres pierden cantidades adicionales de hierro por la menstruación, hasta 2 mg/día. La cantidad de hierro obtenida cada día con la dieta debe ser, por lo menos, igual a la perdida por el organismo.
Destrucción de los eritrocitos o hemocateresis
Una vez que pasan a la circulación, los eritrocitos tienen una vida media de unos 120 días antes de ser destruidos. Las células envejecen, su membrana se vuelve frágil y algunos se rompen al pasar por los lugares estrechos y tortuosos de la circulación como sucede en el bazo, con lo que la hemoglobina (Hb) liberada de los eritrocitos lisados pasa a la circulación en donde se une a una proteína transportadora que se llama haptoglobina. La Hb unida a la haptoglobina y muchos eritrocitos viejos son fagocitados por los macrófagos en el bazo, el hígado o los ganglios linfáticos.
En los macrófagos, la Hb se separa en la parte proteica (globina) y el grupo hem. La globina es catabolizada a aminoácidos y el grupo hem es escindido en hierro libre (Fe+++) y un pigmento llamado biliverdina. La biliverdina posteriormente es transformada en bilirrubina, que pasa a la sangre y es transportada por la albúmina (bilirrubina no conjugada) hacia el hígado en donde es conjugada por los hepatocitos y después transportada por la bilis al intestino delgado (bilirrubina conjugada).
En las siguientes horas o días los macrófagos liberan el hierro del grupo hem a la sangre para que pueda ser utilizado de nuevo. El hierro se combina con la apotransferrina y sigue el ciclo ya explicado en el apartado del metabolismo del hierro.
Leucocitos o glóbulos blancos
Los leucocitos son células sanguíneas verdaderas, puesto que tienen núcleo, al contrario de lo que sucede con los hematíes o las plaquetas. Son las unidades móviles del sistema de protección (o sistema inmune) del cuerpo humano, tienen mayor tamaño que los hematíes y están presentes en la circulación en un número mucho menor (unos 7000/mm3, ó 7 mil millones por litro de sangre). Una gran parte de ellos madura en la médula ósea (granulocitos, monocitos y linfocitos B) y el resto en el timo (linfocitos T). Hay 2 grandes tipos de leucocitos según contengan o no gránulos en el citoplasma:
- granulocitos o polimorfonucleares que tienen núcleos multilobulados y gránulos en el citoplasma. Según la naturaleza de los gránulos que poseen en el citoplasma son neutrófilos (violetas), eosinófilos (rojos) y basófilos (azules intensos).
- agranulocitos o mononucleares, que no tienen gránulos en el citoplasma. Son los monocitos, con núcleos en forma de riñón y los linfocitos, con núcleos grandes y poco citoplasma.
A pesar de que todos los leucocitos participan en la defensa de los tejidos frente a los agentes causantes de enfermedades, cada clase de célula tiene un papel diferente. Los neutrófilos y los monocitos defienden al organismo al fagocitar microorganismos extraños. Los eosinófilos y los basófilos aumentan en caso de reacciones alérgicas. Los linfocitos defienden al organismo por medio de la llamada inmunidad específica.
El ser humano adulto tiene unos 7000 glóbulos blancos/mm3 de sangre. Si tiene un número mayor a 10000/mm3 se dice que hay una leucocitosis y si su número es inferior a 4000/mm3 se dice que tiene una leucopenia. La proporción de los diversos tipos de leucocitos (fórmula leucocitaria) en estos 7000 glóbulos blancos/mm3 es:
- Neutrófilos 62 %
- Eosinófilos 2.3 %
- Basófilos 0.4 %
- Monocitos 5.3 %
- Linfocitos 30 %
(Las bandas son neutrófilos inmaduros, no segmentados, y aparecen en gran número cuando hay una infección).
La formación y destrucción de los leucocitos es contínua y su concentración en la sangre depende del equilibrio entre formación y destrucción. Hay variaciones normales a lo largo de la vida en cuanto al número y porcentaje de leucocitos. Así los recién nacidos presentan unos números de leucocitos superiores a 20000/mm3, durante la infancia hay una linfocitosis (50%) que se normaliza durante la pubertad y en el embarazo hay una neutrofilia.
Formación y transporte de los granulocitos y monocitos
En el tejido hematopoyético de la médula ósea, se encuentran las unidades de células progenitoras formadoras de colonias de granulocitos-monocitos (UFC-GM) de donde derivan los granulocitos neutrófilos y los monocitos; las células precursoras o mieloblastos eosinofílicos de donde derivan los granulocitos eosinófilos; y las células precursoras o mieloblastos basofílicos de donde derivan los granulocitos basófilos
Los granulocitos que se forman en la médula ósea quedan almacenados en la misma hasta que se necesitan en alguna parte del organismo y entonces pasan a la circulación sanguínea en donde su vida media es de unas horas. Los monocitos son células inmaduras con muy poca capacidad para luchar contra agentes infecciosos en la sangre, por la que circulan poco tiempo (unos 2 días) antes de pasar a través de las paredes capilares e introducirse en los tejidos en donde aumentan de diámetro hasta 5 veces, desarrollan gran número de lisosomas y mitocondrias en el citoplasma y pasan a ser macrófagos tisulares con capacidad fagocitaria o de ingerir partículas extrañas sólidas. De este modo pueden vivir meses e incluso años en los tejidos, a menos que sean destruidos al llevar a cabo la fagocitosis.
Propiedades de los neutrófilos y monocitos
Los granulocitos neutrófilos representan un 60% del total de leucocitos circulantes y, por tanto, son los más numerosos. Deben su nombre a que su citoplasma no se tiñe con colorantes acidófilos como la eosina ni con colorantes basófilos como el azul de metileno. Una vez producidos en la médula ósea, quedan almacenados durante varios días antes de ser liberados a la circulación en donde permanecen 4 – 8 horas antes de emigrar a los lugares donde son necesarios. Son fagocitos, es decir, que son capaces de ingerir partículas extrañas sólidas.
Los monocitos representan un 5.3 % del total de leucocitos circulantes y son los de mayor tamaño. Sus núcleos tienen forma de riñón, se forman en la médula ósea, donde permanecen unas 24 horas, y después pasan a la sangre, circulando unos 2 días antes de emigrar hasta los tejidos en donde se transforman en macrófagos que tienen capacidad de fagocitar, como los neutrófilos. También participan en las respuestas inmunológicas, tanto mediante la presentación de antígenos que puedan ser reconocidos por los linfocitos como estimulando la formación de linfocitos.
Los neutrófilos y los macrófagos son los que primero atacan y fagocitan a bacterias, virus y otros agentes nocivos. Los neutrófilos son células maduras que pueden atacar y destruir microorganismos incluso en la sangre circulante, por éso son los leucocitos más numerosos en el torrente circulatorio. Como son destruídos durante el proceso de fagocitosis, en situaciones de infección grave aumenta el número de neutrófilos en sangre periférica (neutrofilia) y también el número de neutrófilos jovenes (los neutrófilos en banda o no segmentados). Los macrófagos no pueden fagocitar microorganismos en la sangre circulante porque se encuentran en los tejidos que es el lugar en donde realizan su trabajo de defensa.
Las propiedades de los neutrófilos y macrófagos son:
- Diapedesis: o capacidad de los neutrófilos y monocitos circulantes de atravesar la pared capilar por un movimiento ameboidal y pasar a los tejidos, después de adherirse a la pared del vaso.
- Movimiento ameboide: gracias a su capacidad de formar seudópodos, tanto los neutrófilos como los monocitos y macrófagos pueden desplazarse por los tejidos. La velocidad de desplazamiento puede variar en función del tejido o de agentes externos (temperatura, corticoides, antiinflamatorios).
- Quimiotaxis: o atracción de los neutrófilos y macrófagos hacia los lugares de inflamación en los tejidos por determinadas sustancias químicas producidas por las propias bacterias, o por el tejido inflamado o derivadas del sistema del complemento.
- Fagocitosis o capacidad de los neutrófilos y macrófagos de ingerir partículas extrañas sólidas.
Sistema monocito-macrófago o retículo-endotelial
El sistema monocito-macrófago o retículo-endotelial está constituído por el conjunto de monocitos, macrófagos tisulares libres y macrófagos tisulares fijos distribuídos por el organismo. Los macrófagos tisulares fijos se encuentran en los ganglios linfáticos, los alvéolos pulmonares, los sinusoides hepáticos (en donde reciben el nombre de células de Kupffer), la médula ósea y el bazo. La microglia que se encuentra en el sistema nervioso central son macrófagos especializados.
Propiedades de los Eosinófilos
Los granulocitos eosinófilos representan el 2% del total de leucocitos circulantes. Como su nombre indica, sus gránulos citoplasmáticos adquieren un intenso color entre anaranjado-rojizo y rojo durante la tinción con eosina. Una vez producidos en la médula ósea, los eosinófilos quedan almacenados durante varios días antes de ser liberados a la circulación en donde permanecen 3 – 8 horas antes de emigrar a los lugares donde son necesarios, preferentemente la piel y los sistemas respiratorio y digestivo. El número de eosinófilos circulantes muestra una variación marcada a lo largo del día, siendo máximo en la mañana y mínimo en el atardecer.
Son fagocitos, es decir, que son capaces de ingerir partículas extrañas sólidas, y parecen desempeñar un papel importante frente a infecciones por helmintos. Como estos microorganismos son demasiado grandes para ser fagocitados por una sola célula, los eosinófilos secretan unas proteínas que atacan la membrana externa de los parásitos y los inactivan o los destruyen. La infección por parásitos determina una sobreproducción mantenida de eosinófilos.
También pueden funcionar para localizar y anular el efecto destructivo de las reacciones alérgicas, causado por la liberación de sustancias contenidas en los gránulos de los mastocitos (como la histamina), mediante la producción de un factor que inhibe la desgranulación de los mastocitos. Los eosinófilos son atraídos hasta los lugares de inflamación por unas sustancias químicas liberadas por los mastocitos. De modo que la exposición de indivíduos alérgicos a su alergeno, provoca un aumento transitorio del número de eosinófilos (eosinofilia).
Propiedades de los basófilos
Los granulocitos basófilos tienen unos gránulos en el citoplasma fuertemente teñidos de azul en presencia de colorantes básicos como el azul de metileno. Solo representan el 0.5% de los leucocitos circulantes y se considera que son precursores de los mastocitos, una vez emigran desde la sangre a los tejidos. Tanto los basófilos como los mastocitos tienen receptores de membrana específicos para la inmunoglobulina E (IgE) que es producida por células plasmáticas como respuesta a alergenos. El contacto con un alergeno resulta en una rápida secreción de los gránulos de estas células, con lo que se libera histamina y otros mediadores vasoactivos y se produce una reacción de hipersensibilidad que puede la causante de rinitis, algunas formas de asma, urticaria y anafilaxia. Secretan también sustancias que atraen a los eosinófilos a los lugares de inflamación.
Linfocitos
Los linfocitos son las células sanguíneas encargadas de la inmunidad adquirida o específica.
Representan alrededor del 30% de la población total de leucocitos en la circulación, están dotados de las capacidades de diapedesis (atravesar la pared capilar por un movimiento ameboidal y pasar a los tejidos) y de quimiotaxis (los linfocitos son atraídos hacia los lugares de inflamación en los tejidos) pero no tienen capacidad fagocitaria y circulan de modo contínuo desde los órganos linfáticos hacia el torrente circulatorio a través de la linfa. Pasan a los tejidos, luego de nuevo a la linfa y otra vez a la sangre y asi contínuamente. Hay dos tipos de linfocitos: linfocitos T y linfocitos B. Morfológicamente no es posible diferenciarlos entre sí y hay que realizar estudios inmunológicos con marcadores de membrana. El 80% de los linfocitos circulantes son linfocitos T.
Las células madres comprometidas linfoides en la médula ósea, dan lugar a las células precursoras o linfoblastos, los linfoblastos B y los linfoblastos T. Los linfocitos procedentes de estas células son inmaduros y necesitan madurar y hacerse inmunocompetentes para poder actuar.
Los linfocitos B maduran y se hacen inmunocompetentes en la médula ósea. Los linfocitos T maduran y se hacen inmunocompetentes en el timo. Los linfocitos B tienen una vida muy breve (unas pocas horas), mientras que los linfocitos T pueden vivir 200 días o más. Cuando los linfocitos T y B se vuelven inmunocompetentes, desarrollan un tipo de receptores específicos en su membrana, que les permite reconocer y unirse a un antígeno extraño específico, de modo que el linfocito reacciona a un antígeno determinado y solo a ése, porque todos los receptores de antígenos de su membrana son del mismo tipo. Son nuestros genes los que determinan a cuáles agentes extraños reaccionarán nuestros linfocitos.
Una vez que los linfocitos B y T son inmunocompetentes, se dispersan y circulan por los ganglios linfáticos, el bazo y otros tejidos linfoides en donde ocurre el encuentro con los antígenos extraños. De aquí que podamos decir que la inmunidad adquirida se debe al tejido linfoide. Las personas cuyo tejido linfoide se ha destruído por radiaciones o productos químicos no pueden sobrevivir, porque el tejido linfoide es esencial para la supervivencia del ser humano. El tejido linfoide está distribuído en el cuerpo de modo muy ventajoso para interceptar los agentes invasores. Así, el tejido linfoide de la faringe oral y nasal intercepta los antígenos que entran por las vías respiratorias altas, el del tubo digestivo se ocupa de los antígenos que lo invaden a través del intestino y el de los ganglios linfáticos se ocupa de los antígenos extraños que invaden los tejidos periféricos.
Linfocitos B y T
Los linfocitos B tienen como receptores de superficie ciertos tipos de anticuerpos (que son inmunoglobulinas) y, al ser activados por un antígeno específico para esos receptores, se transforman en células plasmáticas que son las encargadas de producir y secretar anticuerpos o inmunoglobulinas específicos contra el agente invasor, que circularán por la sangre y la linfa.
Por otro lado, se han identificado subtipos de linfocitos T según sus marcadores de superficie específicos, conocidos como marcadores CD. Todas los linfocitos T poseen en común el marcador CD3. Los linfocitos T colaboradores o auxiliares poseen, además del CD3, el grupo de marcadores CD4 y se les llama, por ello, linfocitos CD4. Los linfocitos T citotóxicos poseen, además del CD3, el grupo de marcadores CD8 y se les llama, por ello, linfocitos CD8. Los pacientes con SIDA tienen unos niveles bajos de linfocitos CD4 en sangre circulante.
Cada linfocito T o B es capaz de reaccionar contra un antígeno específico dando lugar o a una célula T activada específica o a una célula plasmática y a un anticuerpo específico, respectivamente. Cuando un antígeno activa a un linfocito T o B, éste se reproducirá en una gran cantidad de descendientes idénticos. Si son linfocitos T, sus descendientes serán células T sensibilizadas a ese antígeno, que pasan por la linfa hasta la sangre, circulan por todo el organismo y de nuevo a la linfa. Y así una y otra vez, a veces durante meses o años. Si son linfocitos B, sus descendientes son células plasmáticas que secretarán un anticuerpo específico.
Todos los linfocitos que tienen la capacidad para dar lugar a la misma célula T sensibilizada o a la misma célula plasmática capaz de secretar el mismo anticuerpo, forman una clona o colonia de linfocitos sensibilizados frente a un antígeno extraño determinado.
En el tejido linfoide se encuentran, además de linfocitos, millones de macrófagos. De modo que la mayoría de microorganismos experimentan primero fagocitosis y digestión. Después, los productos antigénicos quedan liberados en el citoplasma de los macrófagos que entonces trasladan estos antígenos a su membrana para que los linfocitos los puedan detectar. La mayor parte de los antígenos activan a la vez a los linfocitos T y a los B.